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ABSTRACT 

We present a neu method for resolving the scheme-scale ambiguity that 

has plagued perturbative analyses in quantum chromodynamics (QCDI and 

other gauge theories. For Abelian theories the method reduces to the 

standard criterion that only VOOUUIO polarization insertions contribute 

to the effective coupling constant. Given a scheme, our procedure 

automatically determines the coupling-constant scale appropriate to a 

particular process. This leads to a new criterion for the convergence 

of perturbative expansions in QCD. We examine a number of uell knoun 

reactions in QCD. and find that perturbation theory converges uell for 

all processes other than the gluonic width of the T. Our analysis calls 

into question receni determinations of the QCD coupling constant based 

upon T decay. 
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1. INTRODUCTION 

A major ambiguity in the interpretation of perturbative expansions in 

quentum chromodynamics (QCD) is in the choice of an expansion parameter. 

In qenerai QCD predictions for some measurable quantity P have the form 

( 

a,(Q) ..z(Q) 
P = C.,arCQ) 1 + C,(Q) -+ C2(Q)-+ .-. 

6 sz I (1) 

The coefficients Ci(Q) depend upon both the exact definition of the 

running coupling constant a=(Q) (i.e.. the ‘scheme’l. and upon the 

choice of scale 9. When uorking to all orders in a.(Q) the choice of 

scheme and scale is irrelevant; the coefficients Ci(Q) are defined so 

that p is the same for all choices. Nouever, this freedom can be a 

serious source of confusion in finite order analyses. Indeed uhen 

uorking to first order. one can set CI(P) to any value simply by 

redefining (1s or by changing Q. This coefficient seems meaningless 

here. In particular it seems to give no indication of the convergence 

of the expansion. This question is of critical importance in testing 

QCD since (Lo is rather large c-.1-.31 at current energies. It is quite 

likely that perturbation theory uill fail completely for some processes. 

Such processes must be identified. 

.The potential difficulties are uell illustrated in IOU energy quantum 

electrodynamics (QEO). uhere for example the electron anomaly has a very 

convergent expansion. 

9*-2 a 
a. = -:- 

[ 
1 - 0.657 ” 

at 
+ 2.352 - 1.. 

2 2s e 02 I (2) 

uhile the expansion for orthopositronium decay is much less convergent: 

l-0-h = To 
[ 

1 - 10.3” + .-. . 

II 1 (31 
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The difference in convergence rate here is not an artifact due to a bad 

choice of scheme or scale; the first order coefficients in these 

expansions should not be absorbed into a redefinition of a since the 

running coupling constant for QED doesn’t run at these energies (i.e.. 

. below the e*e- threshold). 

While numerous schemes have been studied Cf’lS,’ I?%.* PlDt’l,’ --.I, 

little has been done to resolve the scale ambiguity. In this paper ue 

introduce an automatic procedure. for determining the coupling-constant 

scele appropriate to a particular process.’ Given a scheme, this results 

in a neu criteriowfor the convergence of perturbative expansions in QCD 

by unambiguously fixing the expansion coefficient CICQI in Eq. Cl) for a 

given process; perturbation theory cannot be trusted when C,(Q) 

as(Ql/n 1 1. Furthermore. the coupling-constant scale can be determined 

uithout computing all higher order corrections. Thus leadino order 

onalvsesanibeofullv conoared uith experiments. 

In Section 2. ye outline our basic approach as applied to QED (i.e.. 

Abelian theories). We define the running coupling constant a(Q) for QED 

to include all contributions due to vacuum polarization insertions in 

the photon propagator. This is the only natural choice since the 

variation of the effective coupling in QED is due to vacuum polarization 

alone. The coupling-constant scale Qe best suited to a particular 

process in a given order can be determined simply by computing the 

vacuum-polarization insertions in the diagrems of thst order. 

Expansion Cl) is then replaced by 

aCQ,*l a*CQz*l 
p = CoaCQ,*l 1 + c,+ - + cz* + . . . 

II Is (4) 
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uhere all photon self-energy corrections are absorbed into the effective 

coupling constants by an appropriate (end unique) choice of scales Pof. 

49’. -... Since all dependence upon the number of light-fernion flavors 

(nf) usuelly enters through the photon self-energy in lou orders. both 

the coupling-constant scales pie and the IOU order coefficients Ci” are 

independent of nf. (Light-by-light scattering graphs lead to nf 

dependence in higher orders.) The light-fermion loop corrections serve 

mainly to renormalize a(Q), as expected. Note also. that in a general 

process. the scales &,s. Q,* can depend on the ratio of invariants. 

0.9.. center-of-mass angles. 

In QCD (i.e.. non-Abelian theories), it again is natural to absorb 

s11 vacuum polarization corrections into a,(Q). In particular, all 

vaouum polarization due to light fermions should be absorbed. leaving an 

expansion 

P = coa.(e*) 
[ 

a.,(Q*) 
, + c,+ - + . . . 

ll 1 (51 
where C,* and Qf are defined to be n+ independent. (The calculation of 

Cf* and Qf is unambiguous since the dependence of as on nf is determined 

to this order by Bo : I1 - 213 nf.1 Although the scale Pe is nou 

automatically fixed. the expansion (5) still depends upon the definition 

of a.(p) - i.e.. upon the renormalization ‘scheme’.5 One can easily 

create schemes in which C,* is srbitrarily large. and. unlike QED. PCD 

has no scheme which is obviously superior. This m ambiguity can in 

fact be eliminated to a large extent by adopting scme physical process 

IS e theoretical standard for defining a.(Q).‘ For example. the ratio 

of e’e- + p’w‘ might be defined to be exactly (s = 9’) 
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Fi.*.-UPI = 3 floors =2 [I + y] . 
(61 

Expansions for other procedures would then be expressed in terms of 

aa(P*l, with scale P* chosen such that CI* and Ps are independent of nf 

as in Eq. (5). As it happens, expressions derived in this R-scheme arc 

almost identical to those obtained for the MS or i?$ schemes (I’lS snd iif 

give the same expansions when used with cur procedure). Ue will adopt 

the iis scheme as our standard in this paper, since it is the more 

familiar. 

There are a large number of physical processes uhich could be used as 

the standard for defining a, with similar qualitative results. A bad 

choice for the standard process csn be detected immediately upon 

application. This is because the differences betueen first order 

coefficients Cl* for various processes are independent of the scheme; 

therefore. for a bad choice of standard process most coefficients C,* 

will be large and have the same sign. This, in fact, does not seem to 

be the case for the R - nS - iis scheme, since for P large number of 

processes the coefficients C$s obtained by using the automatic scale 

fixing procedure are indeed smsll. 

The plan of this paper is as follous. In the next section ue review 

the procedure in which the scale of the running coupling coupling 

ccnstsnt is set in Abelian gauge theory. These ideas are then developed 

for PC0 in Section 3. Ue limit cur discussion to louest and first-order 

corrections. and focus upon processes that do not involve a gluon-gluon 

coupling in leading order. This is sufficient for most 

phenonenologically relevant processes in QCD, and ye illustrate cur 
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procedure for a number of well know reactions. Nest significantly. ye 

find that the gluonic uidth of the T has a very unreliable perturbative 

expansion. We also find that first order corrections are numerically 

small (510-20 percent) for all of the other processes considered. uhen 

the correct coupling-constant scale p* is employed; the lowest order 

calculations. together uith the quark vacuum polarization corrections 

uhich set a*. are quite adequate in these cases for a quantitative 

comparison of theory and experiment. 

Finally. ye summarize cur results in Section 4, contrasting cur 

approach uith other attempts at resolving the “scheme-scale ambiguity.” 

We also briefly explore the possibility of generalizing cur method so 

that it my be applied to all processes in QCD. 

2. QED (ABELIAH GAUGE THEORIES) 

The only true ultraviolet divergences in QED are associated uith 

vacuun~ polarization. because divergences in the vertex and fernion self- 

energy corrections cancel by the Ward identity (or are absent in Landau 

gauge). Thus it is only vacuum polarization corrections that 

ronormalire the coupling. Since these corrections vanish like Qz/m.z as 

Qz + 0. QED becomes a fixed point theory at very IOU energies’: 

a(P) + a = 11137.036 a.. 0se+o . (71 

Equation (71 serves as an initial condition for the renormalization 

group equations. which then uniquely determine a(p) for all 9. In 

effect. ye we absorbing the entire vacuum polarization correction into 

a.(Q) - i.e., (a’ = -92) 
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-gup + quq=/qz 
a(Q) = ao(Ah) d*v(q,b) 

qz + ie 0)) 

uhere aorAl is the bsre coupling and d au the unrenoraalized photon 

propagetor. 

Given this definition. ue need only determine the appropriate scale 

Car scsles) 9 for s given process. The most naive procedure is simply 

to use the full propsgator CEq. (8)) for esch photon in sny given 

diagram.’ For example. Ye can replace a by a(P) for (uith Qf = -q!) 

before integrsting over q in the leeding disgram for the muon snomely 

(Fig. la).’ All vacuum polarization insertions are automatically 

included. Unfortunately. the loop integration is then quite cumbersome. 

Houever, by the mean value theorem there must be some scale Q* - III,, for 

which the exact result is 

aCQ*) 
swVP : - 

2r (9s) 

uhere from the definition. Eq. (8) 

a(Q) = 

,-;[+-y] - ~]2a[;an;+rf3, -EJ - ... (9b) 

(For simplicity Ye are neglecting muon loops and terms of order rn.4 or 

less in a(Q).) The scele Q* can then be determined order by order in 

perturbation theory by expending (9) in pouers of a and sdjusting the 

coefficients to agree with results obtained order by order from vacuum 

polerization insertions in the basic diegrsm. For example. the lovest 

order electron loop (Fig. lb) contributes 

Avp~auo = [i&n:-:] fawo 
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which from Eq. (9s) must equal 

[:AnF-t] ias . 

Thus ue have Q* q rn,,es”z in leading order. blith this procedure. the 

muon anomaly has the same expansion to first order as the electron 

anomaly CEq. (2)) but uith a different expansion parameter - i.e.. to 

this order ue we replacing 

(I 

c 

a 
By = - 1 + - CAvp + C,) + ... 

2n I v I 
by 

a(Q*) 
acI = - 

2n 

uhere 

a(Q*) 
I+- c, + ... 

II I (lOa 

(lObI 

a 
aIQ*l = 

a 
1 - - Avp 

n 

and 

197 lr2 3 
IJ, :-+ - - n’An2 + - X(31 i -0.657 . 

72 6 2 

Intuitively this is reasonable since if a single insertion gives 

a41 Avp, s double insertion vi11 give roughly (a/a Avp)‘. and so on. 

Thus the electrons modify only the charge and not the physical expansion 

of a, in this order. Of course this is no longer the case in higher 

orders. when ‘light-by-light’ diagrams (Fig. lc) and others like them 

appear. 
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The physics1 scale Qe is refi ned by higher order corrections - 

pf = mue5”* (1 + 1.14 a/n + ...I - but its expsnsion is obviously fsr 

more convergent than the origins1 expansion for a&. Also this expsnsion 

is unique. For example. including the C, a/o in a(Q*l CEq. (lObI> uould 

weak havoc uith the next-to-leading logarithms of m,,/m. in higher 

orders; there is no reason to expect that the CC a/p is psrt of an 

approximately geometric series of contributions. uhile the vacuum 

polarization corrections must be geometric (for renornalizabilityI. 

Finally, each order in perturbetion theory uill ususlly hsve its oun 

scale (determined as above); there is no reason for all running 

couplings to have the ssme stole. 

3. QCO (NON-ABELIAN GAUGE THEORIES) 

A nature1 definition for the running coupling hss proven far more 

elusive in QCO than in QED. There is no boundary condition for a.(91 

a”alogous to Eq. (7). A perverse definition - e.g.. ap(p) = afj5(P) + 

10‘ afi~(Ql - uould lead to absurd results. To ovoid or at least 

minimize this possibility ue can define a.(Q) directly in terms of a 

specific physical process, as in Eq. (6). This is equivalent to 

prescribing a renormalizstion scheme. Here, houever, ue mill simply 

adopt the r?s scheme, since it happens to be practically equivalent to 

choosing R.*.- to define a.. 

Our procedure for fixing the scsle is then straightforuord. at least 

for processes uhich do not have gluon-gluon interactions in louest 

order. To first order, such P process hss an expansion 
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E 

aif 
p = co llRH(Q) 1 l - CAvpnf + B) 

II I 

uhere the nf term is all due to quark vacuum polarization. As in 4EO. 

the sole function of these light-quark insertions is to renormalize the 

coup1 ing. Given a reasonable scheme, all such terms should be 

completely absorbed into the leading order coupling by redefining the 

seal e : 

00 4* -1 
aiis(Q) + afig = afif(Pl 1 + - agf(QJ An - + .*- 1 . 

2n a 

Furthermore, the new scale Q* must be nf-independent if it is to retain 

any physical significance in relation to the momenta circulating in the 

leading order diagrams. Thus ue replace 

aiB(Q) 3 33 

p = CO afi!fj(q) 1 + - - - 6eAvp + - Ayp + G 1 + . . . J 2 2 1 
by 

[ 

ais. 
P = co afiscQ*) , + c,* + . . . 

P 1 CllaJ 

where 

41 q 4 exp(3 Avp) 

C,* = 33/2 Ayp + 6 . Cllb) 

The term 33 Avp/2 in Cl* serves to remove that part of the constant S 

uhich renormalizes the leading order coupling. The ratio of these 

gluonic corrections to the light-quark corrections is fixed by Se = 

II - 213 nf. 

Several features of this procedure are uorth noting: 
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- Tuo schemes that differ only by an “f-independent resealing give 

identical expansions in a.fQ*). Thus the differences between B 

and i%. for example. are irrelevant in this approach. Furthermore, 

aa could be replaced by aaW2) or aaflOzag) in definition (6) 

with no effect on the final results for any process p expressed in 

termS Of asfg+). 

- If the ii- scheme is replaced by another for uhich 

[ 

aii5 
a.(q) = aiG(el 1 + - (D ~~ + E, + . . . 

D 1 
=ii5 

= ais(Q e“D) I + - E + --- 
. 1 (121 

uhere 0 and E are “f-independent, then the first order coefficients 

for all processes are shifted by -E: cl* -b c,* - E. Differences 

between first order coefficients are scheme independent. Thus. for 

a poorly chosen scheme, the coefficients for most processes sill be 

large and have the same sign. On the other hand. if several 

processes have convergent expansions (i.e.. C,* small) in some 

scheme. then this will still be true in the physical scheme defined 

in terms of any one of these processes (see Eq. (6)). 

- The leading order scale is determined solely by Ayp. uhich comes 

from quark vacuum-polarization insertions. This is usually all 

that need be computed to make a meaningful leading order 

prediction. as se shou below. 

- Equation flla) is a particularly convenient uay to present 

perturbative results since all flavor dependence is implicit in the 

definition of aft%. 
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The automatic scale-fixing procedure determines a natural expansion 

parameter ah~fQ*l for the majority of interesting processes in PCO. 

Nouever, reactions uith gluon-gluon couplings in leading order are more 

difficult to analyze because quark loops appear in the first-order 

radiative corrections to the gluon-gluon vertex as veil as in propagator 

insertions. It seems difficult if not impossible to separate the 

divergent part of the vertex. uhich renormalizes a,, from the finite 

process-dependent part in any unique and general fashion. Consequently. 

our procedure for determining Q+ is inapplicable; not all of the 

“f-dependence should be absorbed into a.(Q*l. Since any process 

involves gluon-gluon vertices in first order and beyond. ue presently 

can determine pf only to louest order in as/v. 

To illustrate our scale-fixing procedure and to explore its 

implications, ue examine briefly a number of uell knoun predictions of 

gee- -L hadrow - The ratio of the total cross section into hadrons to 

the cross section for e+e- + u*u- iS (8 : Q*l” 

I 

aaI(Q) a& 
R...-(Q2) = 3 1 eqz I + - + - (1.9Il - 0.115 “f) + **a 

q 1 12 I 
(13s) 

aR5CP*) .~~‘cP*l 
+ o.oa + -** 

8 82 fl3bl 

uhere from Eq. (11). Qs = 0.71Q. Notice that ap(Ql fEq. (61) differs 

from ah9(Q*l by only O.Og ahs/r. so that effectively aa and 

ajlgc.71 Ql are interchangeable (for any value of nrl. 
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Deec Inelastic ScatteriDq - The moments of the non-singlet structure 

function Fe(x.Q*) obey the evolution equation” 

d 7”rc’ 
Qz - A” l’l,,(Q*) = - - 

dPf 8x 

aR5 2goBn + 7,“’ 
1 + - + . . . 

4r 7,‘,’ I 

uhere. for example. 

Qt” q 0.48 Q 

g,o* = 0.21 p 

(14s) 

Y”(O’ 
+ - - aiHC&*l 

8ll I 

a~~(&*) 
1 - C” + ... 

8 I Cl4bl 

Ct = 0.27 

c,o = 1.1 . 

For n very large, the effective scale here becomes gn* - Q& uhich is 

exactly uhat uas found in Ref. 12 by a detailed study of the kinematics 

of deep inelastic scattering. 

e - The ratio of the qc uidth into hadrons to that, into Y7 is 

(“f = 3)” 

I-CO. + hadrons) 

I-(Us - YY) 

;‘“~~~~~~‘(l+~[17.13~~“f]+.~.} 

9ed 
CIliaI 

2 afi~zCtl*l a-.:(tl*) 

+- 1+ 2.46 + 9eS’ =QED’ 8 ... 1 (15b) 

uhere tI* = 0.26 IQ+,. 

m - The ratio of the hadronio to the leptonic uidths of the r is 

(“f = 4)” 
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I’Cf -D hadrcns) loclla - 9) ai$tily) aii5 
: 1+- C2.77OC7)Ba - 14.0(S)) + **. 

ru + Ll+~-) 8111 eb2 QQEDa n I 
C16a) 

lOCn* - 9) ahSaUl*) 

I 

afifCM*l 
-8 l- 14.OC5) + *** 

8lneba QED’ II I 
C16bI 

uhere If* = 0.157 MT. Thus the decay rate into glucns has a large 

negative correction uith this physical definition of the coupling. just 

as do the rates for f -D YYY and for orthopositronium decay into three 

photons. both of uhich are scheme and scale independent to this order. 

Such a correction implies large. positive terms in higher orders, and in 

fact these are necessary if ue are to fit the data. Further study is 

clearly necessary before f decay can be used as a reliable measure of 

as. We do note. hcuever. that the large corrections cancel almost 

completely in the branching ratio for producing a direct photon plus 

hadrcns’a : 

TCf -) rc + hadrons) 36 et.’ *QED 
:- 

TCT -r hadrcns) 5 afi~tfl*l I 

afigCtl*) 
1+ 2.2C63 + *-- 

s I 
(17) 

where again T4* q 0.157 T?T. This cancellation occurs because the leading 

order amplitudes for T + ggg and T - rgg are identical in structure. 

Thus the branching ratio for direct photons could be used to determine 

aas. 

Jxclusive Processeg - Exclusive processes involving large transverse 

momentum are given by the convolution of distribution amplitudes dCx.P). 

representing the savefunctions of each initial and final state hadron, 

with Cccllinear irreducible) hard scattering amplitudes TuCxf,g) in 

uhioh each hadrcn is replaced by collinear on-shell quarks Ccr 
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glucnsl.“ The procedure given above allows us trivially to include the 

vacuuin polarization corrections to the (skeleton) tree graphs 

contributing to Tn, and thus set the coupling-constant scale for the 

leading order results. For example, the hard scattering amplitude 

required for the form factor of helicity zero mesonsis (Fig. 2) 

6411 a65 (ems“ Jm 9) 
T~CX.Y.QI q - 

se* Cl-x)Cl-y) C 163 

since the glucn’s momentum transfer is -Cl-x)Cl-y)Qa (Fig. 3). If ue 

estimate <w> - <y> - l/2, then the correct expansion parameter for Tn is 

- ah2CQ14.6) in agreement uith the detailed analysis in Ref. 17. 

PP - The interaction potential between tuc infinitely massive 

quarks is” 

VCQ21 = - cF 4yicQ' {1 + y [i Do - 2] + . ..] 
C19a) 

CF 40 aE3CQ*l ag3CQ*) 
-b- l- 2 + .-. 

a’ ll I C19b) 

uhere Q* = e-s/‘ 9 f 0.43 9. This result shows that the effective scale 

of the % scheme is about half of the true momentum transfer occuring in 

the interaction potential. In parallel to QED. the effective potential 

VCQa) gives a particularly intuitive scheme for defining the QCD 

coupling constant 

41 cF oV(p) 
VCQZ) z - 

92 (203 
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with avCP1 = ahfCe-s“Q) (1 - 2aK$/n me.). The perturbative QCD 

prediction can be tested empirically - uithcut scheme or scale 

ambiguities - if the predictions for tuc processes such as (6) and (19) 

are consistent uith experiment. 

w - The standard MM definition of a, is (Landau gauge)’ 

=iiB 
anode) = a~~(Ql I + - Cl.28 go - 7.473 * *** 

0 I C2la) 

,( 

aR5CP*) 
* a~~caf) 1 - 7.47 + ... 

1 I C21bl 

uhere Q* = 0.077 Q. Although this is not a physical process. we include 

this result because CIOM is a uidely used scheme. Clearly the HOCl scheme 

is inccmpatable with our method of fixing P*; all first order 

coefficients uould be increased by 7.47 if Mtl replaced iis. This is not 

unexpected since anon is defined in terms of the tri-glucn interaction 

and such processes are specifically excluded from cur analysis. Indeed 

the i%ii scheme based upon the quark-glucn vertex is a perfectly 

acceptable alternative to Rs’s: 

ofi6jjCQl = atis 
i 

afig 
1 - 0.4 + -*- 

” I (221 

uhere Q* : 0.43 Q and Landau gauge is assumed. It is only accidental 

that anon(Q) and aQ5fiCQ) are nearly identical for nf q 4. This is not 

the ease for nf # 4 Cnf = 0 * a"c~CQl = ahbhCQlC1 + 2.4 ah~h/n)) and 

from cur perspective the RfiR definition is preferable. 
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4. CONCLUSTONS 

A striking feature of each of the perturbative PC0 predictions. is 

that - except for f decay - the first order correction in aQJ is only 10 

to 20 percent of the leading term at typical Pa after the scale has been 

fixed. (This is despite the fact that the coefficient Avpnf + 8 is 

replaced by 3312 Avp + 6. as in Eq. (113.3 Perturbation theory seems to 

work rather uell - the leading term in ajj3Ce*l for these processes is by 

itself quite accurate. The main effect of the higher order corrections 

is in setting the correct scale P*. and for this’cnly the fernionic 

vacuum polarization corrections are needed. In effect the automatic 

scale fixing procedure uses the fermionic loops to probe the momentum 

flouing in the leading order diagrams. The remainder of the higher 

order corrections. i.e.. the C33/2 Ayp + S)a./r. must of course be 

computed to obtain predictions with precision better than 10 to 20 

percent. 

For 1 decay into three gluons CEq. (1611. the higher order 

corrections are quite large. calling into question the possibility of a 

perturbative analysis of this reaction. The fact that the higher order 

corrections for the corresponding decay of crthcpcsitrcnium in QED are 

large (see Eq. (3)) indicates that this effect is not due to ambiguities 

in the renormalization scale. 

The automatic scale-fixing procedure given in this paper is 

applicable for any choice of renormalization scheme. Nowever. once the 

scale-fixing procedure is used. ue can readily normalize and thus define 

a.(Q) by using a convenient physical process such as Ft.*.-CQ*) CEq. (611 

or the effective potential VCQa) between heavy quarks CEq. 19)). Since 
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the first order corrections are small in iis scheme. any one of the 

physical processes considered could have been used to define a,, vith 

essentially the satae results. The exception is again T decay. 

Reuriting the other expansions in terms of af, defined such that 

l-CT * hadrons) 10Caa - 9) aTaCPlT) 
3 

ra + p*p-) 81 II eba .QED’ (231 

is exact. results in first order corrections ranging from +3 ay/* to +7 

aT/s, depending upon the process. This seems not to be a very good 

scheme. The standard tlOfl scheme appears to be even ucrse and so is 

incompatible uith cur technique. 

in the past, tuc vieupoints have prevailed concerning the resolution 

of the scheme-scale ambiguity. One uas simply to adopt some definition 

of the coupling CNS. iis, HOT% . ..I and then attempt to guess the 

appropriate scale for the process under study (e.g.. Q* = TIT/3 for T 

decay since there are three glucn jets in leading order). Our procedure 

removes any guessucrk hy automatically determining the scale. It is an 

essential complement to any analysis of scheme dependence. Furthermore. 

se ncu can easily introduce physical schemes for defining as (e.g.. Eq. 

(63) which are both gauge independent (unlike tIOPl3 and regulator 

independent (unlike MS, %I. 

The second vieupcint holds that for uant of better guidance ue should 

adopt some ad hoc principle such as maximal ccnvergenceDxO uhere Q* is 

chosen SC that CfCQfl = 0 for i 2 1 in Eq. Cl). or minimal 

sensitivity,r’ uhere Q* is chosen to minimize the variation of p uith es 

(due to omission of higher order terms in Eq. (131. Unlike cur 

procedure, these methods give no indication of the convergence of 
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perturbation theory; C,(p*l is by definition small end process 

independent for both of the methods mentioned above. Such methods uill 

usually be completely wrong uhen applied to processes, like T decay. for 

uhich the higher order corrections are very large; wor.se, they give no 

warning of such situations. 

Our scale-fixing procedure is obviously far from complete. The most 

pressing problem is to find P suitable method for analyzing processes 

with gluon-gluon couplings in louest order. An interim procedure might 

be to absorb all fermion loop corrections - i.e., vacuum-polarization. 

quark loops coupled to three gluons. etc. - into the coupling constant. 

while using some definition of a. related to the tri-gluon interaction 

(e.g.. enon). Houever. something better should be found. When it has 

been, the extension of our analysis to higher orders uill be 

straightforward (as is already true in QED). 
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Figure Captions 

Fig. 1 Oiagrens conributing to the muon’s anomalous magnetic 

moment. 

Fig. 2 The hard scattering amplitude in leading order for meson 

form factors. 
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